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Chromatographic fingerprints recorded for a set of genuine and counterfeit samples of Viagras and

Cialiss were evaluated for their use in the detection and classification of counterfeit samples of these

groups of medicines. Therefore several exploratory chemometric techniques were applied to reveal

structures in the data sets as well as differences among the samples. The focus was on the

differentiation between genuine and counterfeit samples and on the differences between the samples

of the different classes of counterfeits as defined by the Dutch National Institute for Public Health and

the Environment (RIVM). In a second part the revealed differences between the samples were modelled

to obtain a predictive model for both the differentiation between genuine and counterfeit samples as

well as the classification of the counterfeit samples.

The exploratory analysis clearly revealed differences in the data for the genuine and the counterfeit

samples and with projection pursuit and hierarchical clustering differences among the different groups

of counterfeits could be revealed, especially for the Viagras data set.

For both data sets predictive models were obtained with 100% correct classification rates for the

differentiation between genuine and counterfeit medicines and high correct classification rates for the

classification in the different classes of counterfeit medicines. For both data sets the best performing

models were obtained with Least Square-Support Vector Machines (LS-SVM) and Soft Independent

Modelling by Class Analogy (SIMCA).

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

Counterfeit medicines are a growing problem both in devel-
oping as in industrialised countries. The problem of counterfeit
medicines in the industrialised countries, like the European
Union, is mostly due to the extension of the internet. Research
revealed that about one of five Belgians already bought medicines
at least once through internet, from which it is known that about
50% of the products, sold by sites disclosing their identity, are
counterfeit. It is estimated that about 1% of the European market
in medicines is covered by counterfeits [1]. In most cases the
concerned products are produced without respecting the GMP
quality norms and imported illegally. Health risks, associated
with these products, can be due to the absence of the active
ingredient, the presence of a wrong active substance, a wrong
dosage, possible high concentrations of toxic impurities and a
combination of (non-approved) active substances.
ll rights reserved.
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The World Health Organisation (WHO) first cited the counter-
feiting of medicines in 1985 at the conference of experts on the
rational use of drugs in Nairobi. In 1988, a World Health Assembly
Resolution (41.16) recommended to ‘‘initiate programmes for the
prevention and detection of export, import and smuggling of
falsely labelled, spurious, counterfeited or substandard pharma-
ceutical preparations’’ [2]. This led to the launch of many inter-
national initiatives among which the International Medicinal
Products Anti-Counterfeiting Taskforce (IMPACT) started by the
WHO in 2006. In parallel, the major pharmaceutical companies
established the Pharmaceutical Security Institute (PSI) in 2002.
On the European level the European Alliance for Access to Safe
Medicines (EAASM) was created [1]. This is a pan-european
patient safety initiative committed to promoting the exclusion
of counterfeit and substandard medicines from the supply chain.
The European Parliament and the Council of Europe created
recently an amendment to the European directive 2001/83/EC
[3] on the community code relating to medicinal products for
human use, describing the policy of the European Union towards
counterfeit and substandard medicines. On the 26th of October
of 2011 Europe launched the Medicrime convention which was
held in Moscow, Russia. Medicrime is the first international
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instrument for the criminalisation of counterfeiting of medical
products and similar crimes in order to protect public health [4].

The WHO [5] defines a counterfeit drug as ‘‘one which is
deliberately and fraudulently mislabelled with respect to identity
and/or source. Counterfeiting can apply to both branded and
generic products and counterfeit products may include products
with the correct ingredients or with the wrong ingredients, without
the active ingredients, with insufficient active ingredient or with
fake packaging.’’

Even if this is the internationally accepted definition of a
counterfeit medicine, it does not apply to the majority of the illegal
products encountered on the European market, since they do not
copy the packaging and brand names of the genuine products.
Therefore the classification proposed by the Dutch National Institute
for Public Health and the Environment (RIVM) was followed [6]. This
classification (Table 1) distinguishes counterfeits, whose appearance
corresponds to one of the genuine products, and imitations, whose
do not. Most of these imitations originate from Asia, where
European and American patents are not recognised.

The fight against the counterfeiting of medicines resulted in
numerous articles where several analytical techniques have
already been used for the detection of counterfeit medicines.
These techniques are separated into two main groups: chromato-
graphic and spectroscopic techniques.

The chromatographic techniques are used for the separation,
identification and quantification of the active substances. They
may also contribute to the elucidation of the structure of new
analogues. Commonly used chromatographic techniques contain
cheap and easy ones such as thin layer chromatography (TLC)
[7,8] but also more sophisticated and expensive ones: such as
High Pressure Liquid Chromatography with Ultraviolet detection
(HPLC–UV) [9–11], liquid chromatography with mass spectro-
metric detection (LC–MS) [9–22] and LC-diode array detection
(DAD)-circular dichroı̈sm [20].

The spectroscopic techniques are often preferred over chromato-
graphy for the identification of counterfeit drugs because of the fact
Table 1
Definition of the RIVM classes [5].

Main category Subcategory

Counterfeit Professional

Non-professional

Mixed

Fraudulent

Analog

Placebo

Professional

Non-professional

Imitation Mixed

Fraudulent

Analog

Placebo
that they are fast, need less (or no) sample preparation and some of
them are non-destructive. Fourier-transformed Infrared spectroscopy
(FT-IR) [18,19,23], near infrared (NIR) [7,23], Raman spectroscopy
[23–25], X-ray diffraction (XRD) [26], colorimetry [27,28] and
Nuclear Magnetic Resonance (NMR) [25,29] have demonstrated their
usefulness to detect counterfeit or adulterated drugs.

All the papers and research mentioned above are focused on the
identification and/or the quantification of the active substances in
the samples. The disadvantage of this is that a counterfeit sample
can be evaluated to be quite safe based on the active substance
present and the dosage, but in fact it can contain some toxic
secondary components like impurities, plant based materials,
residual solvents, etc. Therefore the approach of using chromato-
graphic fingerprints is interesting, a technique widely used in the
field of pharmacognosy for quality control of plants [30–35].

In the frame of counterfeit drug detection, chromatographic
impurity fingerprints is interesting, since a major hazard of counter-
feit products is the presence of toxic impurities in unknown
amount. Thus, as it is the case for herbal medicines, the fingerprint
approach allows the discrimination of tablets according to their
chromatographic profiles without knowing a priori the identity or
the quantity of the constituents.

In previous work at our section [36], the use of chromatographic
fingerprints was evaluated for its ability to discriminate between
counterfeit and genuine medicines. It was clearly shown that
chromatographic fingerprints allow the distinction between genuine
and counterfeit medicines and can be useful in the fight against
counterfeit medicines. Apart from the fact that almost every
laboratory is equipped with a HPLC instrument, an important
advantage of this approach is that it allows to discriminate, and
quantify the active ingredients and some known impurities and
gives an idea about the impurity profile of the sample which can be
compared with the impurity content of the genuine products.

In this paper several chemometric techniques, both explora-
tive as classification methods, were explored and compared for
their performance in the discrimination between genuine and
Inclusion and exclusion criteria

Appearance in conformity with genuine medicine;

Content of correct API within 90–110% of declared value;

No other APIs; not genuine medicine.

Appearance in conformity with genuine medicine;

Content of correct API outside 90–110% of declared value;

No other APIs.

Appearance in conformity with genuine medicine;

Contains correct API and another, known API.

Appearance in conformity with genuine medicine;

Contains a different, known API.

Appearance in conformity with genuine medicine;

Contains other, unapproved API.

Appearance in conformity with genuine medicine;

Does not contain APIs.

Appearance not in conformity with genuine medicine;

Content of correct API within 90–110% of declared value;

No other APIs.

Appearance not in conformity with genuine medicine;

Content of declared API outside 90–110% of declared value;

No other APIs.

Appearance not in conformity with genuine medicine;

Contains declared API and another API.

Appearance not in conformity with genuine medicine;

Contains an undeclared API.

Appearance not in conformity with genuine medicine;

Contains other, unapproved API

Appearance not in conformity with genuine medicine;

Does not contain APIs.



E. Deconinck et al. / Talanta 100 (2012) 123–133 125
counterfeit medicines and the classification of counterfeit medi-
cines following the RIVM classification, based on the chromato-
graphic fingerprints obtained by Sacré et al. [36].
2. Theory

2.1. Exploratory methods

2.1.1. Principal component analysis (PCA)

PCA is a projection method that allows projecting high dimen-
sional data into a low dimensional space of new latent variables,
called principal components.

The general principal of PCA is to reduce the number of
variables by calculating linear combinations of these variables,
in which the weights or loadings of the different variables are
chosen in such a way that the first principal component repre-
sents the highest variance in the data set and the higher principal
components the highest remaining variance. By definition the
different principal components are orthogonal. The loadings of
the variables show their respective contribution to a given PC and
the correlation between the different explanatory variables. The
projections of the objects on the PCs are called the scores and give
information about the similarities among the objects [37].
2.1.2. Discriminant partial least squares (D-PLS)

Partial Least Squares is a supervised technique, based on exactly
the same principles as PCA. The difference is situated in the
definition of the latent variables, called PLS-factors. The PLS-factors,
also linear combinations of the original explanatory variables in the
data set, are defined in such way that they maximise the co-variance
with the response variables (categorical for D-PLS). In this way
latent variables are obtained that are more directly related to the
response variables [37].
2.1.3. Projection pursuit (PP)

PP is also a projection technique that is able to project high
dimensional data into a low dimensional space, defined by a
few latent variables, called projection pursuit features (PPFs).
Contrary to PCA, PPFs are obtained by maximising a projection
index describing inhomogeneity of the data. In such a way PP can
be complementary to PCA in revealing the data structure and
groups of similar samples that could not be observed with PCA. In
this study the algorithm as described by Croux and Ruiz-Gazen
was used [38]. Three projection indices were tested: entropy,
kurtosis and yenyukov.
2.1.4. Hierarchical clustering

In order to cluster the samples according to their similarity
different types of hierarchical clustering were performed on both
data sets. In fact the objects are clustered in a hierarchical and
agglomerative way. Hierarchical means that smaller clusters are
included in larger ones or vice versa, and agglomerative means
that objects are sequentially merged [39]. The goal of the method
is to classify m objects in m�1 steps. In each consecutive step, the
two most similar objects (clusters) are merged. The objects
(clusters) to merge are derived from the dissimilarity matrix,
representing the dissimilarity between each pair of objects
(clusters). Dissimilarities or dissimilarity coefficients are positive
numbers that are small if two objects are closely related and large
if they differ [37,39]. In this study different coefficients based on
the distances between objects in the data space are applied and
compared for their performance in clustering the different samples
in the data set (see results).
2.2. Modelling methods

2.2.1. K-nearest neighbours (k-NN)

The k-nearest neighbour method [37], k-NN, is a classification
technique where neighbourhoods of training set objects are used
for the construction of classification rules. During the classifica-
tion procedure, the Euclidian distances between an unknown
object and each of the objects of the training set are computed.
For a dataset with n samples, n distances are calculated. Then, for
a new object its k closest neighbours from the training set are
examined. The unknown object is classified into the group to
which the majority of the k neighbouring objects of the training
samples belong.

2.2.2. Classification and regression trees (CART)

CART is a non-parametric statistical technique, developed by
Breiman et al. [40] in 1984, which is able to solve classification
(categorical dependent variables) as well as regression problems
(continuous dependent variables). In both cases the method
builds a decision tree, describing a response variable as a function
of different explanatory variables.

A CART analysis generally consists of three steps. In a first step
the maximum tree is build, using a binary split-procedure. To
choose the most appropriate variable and split value, CART uses
an algorithm in which all descriptors and all possible split values
are considered. The split resulting in the highest decrease in
impurity between the mother group and the daughter groups is
selected. For classification trees the impurity can be defined by
different split criteria [40]. The three commonly used split criteria
are the Gini index, the Twoing index and the Information index.

The maximum tree is overgrown and closely describes the
training set, usually resulting in overfitting. In a second step this
overfitted model is pruned. This procedure results in a series of
less complex trees, derived from the maximum tree. In the third
and final step the optimal tree is selected using a cross validation
procedure. For more details we refer to Refs. [40–42].

2.2.3. Soft independent modelling by class analogy (SIMCA)

SIMCA is a classification technique that models each class of a
dataset separately using PCA. The optimal number of principal
components, required to describe a training class, is evaluated
using a cross-validation procedure. To construct classification
rules, two critical values are considered obtained for the Euclidian
distances towards the SIMCA model (the so-called orthogonal
distances) and the Mahalanobis distances computed in the space
of scores. The two critical values define a limited space around the
samples of the training set in the model space with respect to
their orthogonal distance and Mahalanobis distance. The position
of a new object in the studied space is computed using the scores
and loadings of the constructed PCA model. If the object is located
within the defined limited space of orthogonal and Mahalanobis
distances for the training class then it is said to belong to this
class. Otherwise, the object is considered as an outlier, i.e. not
belonging to this group. Confidence limits were set at 95%. Since
SIMCA belongs to the so-called soft classification methods, it is
possible that a new sample can be assigned to one or more
existing groups or to any. This is a direct consequence of building
disjoint classification models for each group of samples [37].

2.2.4. Support vector machines (SVM)

SVMs were originally designed to solve binary classification
problems. Their basic concept is based on the calculation of hyper-
planes defining decision boundaries to separate data points belong-
ing to different classes. SVMs are able to deal with simple linear
but also with more complex non-linear classification problems.
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The idea behind SVMs is to map the original data points from the
input data to a high dimensional feature space such that the
classification problem becomes easier to solve in the feature space.
The mapping is done by a suitable choice of a Kernel function [43].
The Kernel function transforms the data to a high dimensional
space where the classification problem can be solved. Two types of
Kernel functions were tested in this study: a Kernel function based
on the standard inner product and a Radial Basis (Gaussian) Kernel
function. More details about the mathematics behind SVM, the
Kernel functions and the algorithms used in this study can be found
in Refs. [43,44].
3. Methods and materials

3.1. Data

The data for the Viagras like samples consists of the chromato-
graphic fingerprints for 48 samples of counterfeit and imitations
of Viagras and 9 genuine samples. For the Cialiss like samples the
data consists of the chromatographic fingerprints obtained for 44
samples of counterfeit an imitations of Cialiss and 6 genuine samples.
The chromatographic fingerprints were recorded using the method
described in Pharmeuropa for sildenafil (Viagras) [45] and a slightly
adapted method from Pharmeuropa for tadalafil (Cialiss) [46]. For
more details about how this data was acquired we refer to Sacré et al.
[36]. During the study of Sacré et al. it was seen that the variability in
the chromatograpic fingerprints for the genuine samples is very low.
The limited number of genuine samples should therefore be enough
to represent the genuine class in the models.

All counterfeit and imitation samples were donated by the
Federal Agency for Medicines and Health Products in Belgium
(AFMPS/FAGG). One batch of each dosage of genuine Viagras

(25 mg, 50 mg and 100 mg) was kindly provided by Pfizer SA/NV
(Belgium). Eli Lilly SA/NV (Benelux) kindly provided one batch
of each commercial packaging (10 mg and 20 mg) of genuine
Cialiss. Two other batches of each dosage of the genuine products
were purchased from local pharmacies in Belgium.

The counterfeit samples were classified following the classifi-
cation proposed by the RIVM [6]. The classification for both data
sets is given in Table 2.

3.2. Data pre-processing

In general the pre processing of chromatographic data consists
of an improvement of the signal-to-noise ratio, normalisation and
Table 2
Composition of the data sets in function of the RIVM classes [6].

Main
category

Subcategory Category
number

Number of
Viagras like
samples

Number of
Cialiss like
samples

Counterfeit Professional 1 0 0

Non-

professional

2 2 0

Mixed 3 1 5

Fraudulent 4 0 0

Analog 5 0 0

Placebo 6 0 0

Professional 7 34 28

Non-

professional

8 11 4

Imitation Mixed 9 1 6

Fraudulent 10 0 1

Analog 11 0 0

Placebo 12 0 0

Genuine 0 9 6
peak alignment [47]. For the data used in this study a simple peak
correction was sufficient to obtain a good overall alignment of all
signals. For more details about the data pre-processing and the
major steps of the applied alignment method we refer to Sacré
et al. [36] and Daszykowski et al. [48].

In order to evaluate the predictive properties of the models both
data sets were divided in training and test set. It was chosen that the
test sets would contain about 20% of the samples. Two selection
algorithms i.e. Duplexx [49] and Kennard and Stone [50] were
applied to both data sets. For the Viagras data set the test set (14
samples) selected by the Duplexx algorithm was considered as more
representative for the complete data set than the one selected with
Kennard and Stone. The main reason was that no genuine samples
were selected for the test set with Kennard and Stone. For the
Cialiss data set Kennard and Stone selected the best test set (12
samples), based on the coverage of the data space.

From the PCA plots shown in Fig. 1 it can be seen that the
selected test sets cover quite well the data space of the data sets.
3.3. Software

Data processing and modelling was performed using Matlab
version 7.9.0 (The Mathworks, Natick, MA, USA). The algorithms
for PCA, D-PLS, PP, k-NN and hierarchical clustering were part of
the ChemoAC toolbox (Freeware, ChemoAC Consortium, Brussels,
Belgium, version 4.0). The programming of the CART algorithm
was done according to the original CART algorithm proposed by
Breiman et al. [40]. The SIMCA toolbox was downloaded from
Fig. 1. PCA plot representing the spread of the test set for the Viagras data set

(a) and the Cialiss data set (b) over the data space.
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the Matlab Central (www.mathworks.com/matlabcentral/fileex
change/30762-soft-independent-modelling-of-class-analogy-simca).
SVM analysis was performed using the LS-SVM Toolbox version 1.8
(www.esat.kuleuven.be/sista/lssvmlab).
4. Results

Before data treatment the chromatograms were aligned using
a simple linear interpolation technique [36,48], autoscaled and
log transformed. The log transformation was necessary to reduce
the influence of noise and small baseline shifts. The absorbances
at the different time points were used as explanatory variables
and the RIVM class numbers of the samples (Table 2) were used
as response variables (for the supervised techniques).

4.1. Exploratory data analysis

4.1.1. PCA

4.1.1.1. Viagras-like samples. When performing a simple PCA
analysis on the data set a clear differentiation could be observed
between genuine and counterfeit samples. Fig. 2 shows the score
plot for PC1 and PC2. Investigation of the loadings on PC2 did not
reveal a clear section of the chromatograms to be responsible for
this discrimination. Even though the separation between counterfeit
and genuine is clear, the counterfeit and imitation samples are all
clustered together. No pattern could be observed.

4.1.1.2. Cialiss-like samples. For this data set no differentiation or
clustering could be observed with PCA. The genuine samples are
clustered together with some professional imitations (class 7).
This is probably due to the fact that the counterfeit samples in the
Cialiss data set are more similar to the genuines than is the case
in the Viagras data set. The samples in the Cialiss data set have
more or less the same colour and dimensions what is not the case
for the samples in the Viagras data set. Also within the group of
the counterfeits no clear clustering or differentiation in groups
could be observed.

4.1.2. D-PLS

Since no clear clustering could be observed with PCA, it was
decided to apply D-PLS as a supervised technique in order to
enhance discrimination of the samples in their respective classes.
Fig. 2. Scoreplot for PC1–PC2 obtained for the Viagras data set. The samples are

identified by their class. The circle defines the genuine class.
4.1.2.1. Viagras-like samples. The application of D-PLS did not
result in better separation of the different groups of samples
compared to PCA. The discrimination between genuine and
counterfeits is more pronounced as can be expected with a
supervised technique, but the counterfeit samples are still
together and do not show any clustering or pattern (Fig. 3a).
Also here the loadings do not reveal certain regions of the
chromatograms responsible for the difference between genuine
and counterfeit samples.

4.1.2.2. Cialiss-like samples. On the score plot obtained for this
data set (Fig. 3b) a clear differentiation between counterfeit and
genuine samples can be observed, as well as a tendency of
clustering within the group of the counterfeit samples. The
separation between genuine and counterfeit is mainly defined
along PLS2, but based on the loadings no determining regions of
the chromatogram could be selected. Within the group of the
counterfeit samples, three slightly separated groups could be
observed. One big group containing professional imitations
(class 7) and one non-professional imitation (class 8), a small
group containing only professional imitations (class 7) and one
containing only non-professional imitations (class 8). These
clusters, even if they are only slightly separated indicate that
Fig. 3. (a) Scoreplot for PLS1–PLS2–PLS3 obtained for the Viagras data set. The

samples are identified by their class. The circle defines the genuine class.

(b) Scoreplot for PLS1–PLS2–PLS3 obtained for the Cialiss data set. The samples

are identified by their class. The black circles define clusters of counterfeit

samples. The red circle defines the genuine class. (For interpretation of the

references to colour in this figure legend, the reader is referred to the web version

of this article).
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there is difference in data between the samples of at least the
classes 7 and 8 and that it should be possible to model these
differences using classification algorithms.

4.1.3. PP

Projection Pursuit was applied using each of the three con-
sidered projection indices: entropy, kurtosis and Yenyukov.

4.1.3.1. Viagras-like samples. For the Viagras data set the applica-
tion of PP with the entropy and the kurtosis index to be optimised
did not reveal any structure in the data. No differentiation
between genuine and counterfeit samples could be observed
and no significant clustering among the counterfeit samples
could be observed.

The Yenyukov index is based on a nearest neighbourhood
approach, which says that the clustering tendency of data can be
judged based on the ratio of the mean of all inter-object distances
and the average nearest neighbour distance. The use of this index
resulted in a clear differentiation between counterfeit and genuine
samples as well as in a tendency of clustering between the two
main groups in the data set (groups 7 and 8). Fig. 4 shows the
3-dimensional plot of the projection of the different samples in the
PP-space, defined by the three first projection pursuit factors. In
comparison with PCA and PLS, PP revealed a certain structure in the
data for the different groups of counterfeit samples. This indicates
that these differences could possibly be modelled to obtain a
predictive classification model.

4.1.3.2. Cialiss-like samples. The application of PP to the Cialiss

data set, using the three selected indices, did not result in a clear
structure of the data. No differentiation between genuine and
counterfeit samples could be observed and within the counterfeit
samples no clusters are present. Only when using the Yenyukov
index a tendency of clustering of the genuine samples could be
observed, but the structure is clearly worse than the one revealed
by D-PLS.

4.1.4. Hierarchical clustering

Five different hierarchical clustering techniques, i.e. single
linkage, complete linkage, average linkage, centroid linkage and
the Ward’s method, were applied to both data sets. Each of the
methods was tested using five similarity measures: the Euclidean
distance, the standardised Euclidean distance, the Manhattan, the
Mahalanobis and the Minkowski distance.
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Fig. 4. Scoreplot for PPF1–PPF2–PPF3 obtained for the Viagras data set. The

samples are identified by their class. The circle defines the genuine class and the

arc the separation between the samples of classes 7 and 8.
For both data sets the obtained clustering, with the different
method-similarity measures combinations, was compared based
on the clustering obtained for the differentiation genuine/coun-
terfeit and for the clustering among the different classes of
counterfeit samples.

4.1.4.1. Viagras-like samples. The best results were obtained using
the centroid linkage method with the Euclidean distance as the
similarity measure. Fig. 5 shows the dendrogram (Fig. 5a) as well as
the colour map (Fig. 5b), obtained after the calculation of the
similarity matrix. When analysing the dendrogram it can be seen
that from left to right the genuine samples are clustered together,
followed by the samples of the less represented classes (classes 2
(samples 9 and 15), 3 ( sample 33) and 9 (sample 1)). Next are the
samples of class 7 followed by the samples of class 8, which are
clustered completely to right. Two samples, samples 6 and 29,
belonging to class 8 are clustered with the samples of class 7, but
overall this clustering can be considered as a good result, considering
the non-supervised nature of the technique. The colour map clearly
shows the correlation between the genuine samples (samples 50–58)
and the samples of class 7 in the middle of the map (blue colour).
Moreover the previous methods also showed that samples of class
8 were clustered with class 7 and vice-versa, even if a quite good
overall differentiation could be observed. Again a structure in the data
is revealed that indicates that there are differences between the data,
not only for genuine and counterfeits, but also between the different
groups of counterfeit samples. These differences indicate that a
predictive classification model is possible.

4.1.4.2. Cialiss-like samples. The results obtained for this data set
are less clear than for the Viagras data set. The only technique/
similarity measure combination that resulted in a clustering of
the genuine samples was the Ward’s method using the
Manhattan distance. The dendrogram (Fig. 6) shows that the
genuine samples are clustered on the right side of the structure.
When the other samples/groups are investigated the clustering
seems more or less random. It seems that the differences between
the samples belonging to the different classes are less important
than for the Viagras data set. The bad clustering of the different
counterfeit classes could also be due to the fact that the classes
are represented by less samples. In fact only class 7 is represented
by a significant number of samples, while the other classes are
rather small. This could also explain why only PLS, which is a
supervised technique, is able to reveal differences and patterns.

4.2. Modelling

4.2.1. k-NN

In a first step k-NN models were built using different numbers
of nearest neighbours. The choice of the selected model was based
on the cross validation error obtained using a leave-one-out cross
validation procedure.

4.2.1.1. Viagras-like samples. For the Viagras data set the lowest
cross-validation error was obtained for the model based on three
nearest neighbours. A cross validation error of 0.7955, evaluated
using Leave-one-out cross validation (LOOCV), was obtained. Closer
investigation showed that all genuine samples and no counterfeit
samples are classified as genuine. Four counterfeit samples were
misclassified and five unclassified. The results obtained during
external validation showed more or less the same trend. For the
discrimination between genuine and counterfeit samples a 100%
correct classification is obtained. Three counterfeit samples are
unclassified and one is misclassified (sample of class 2 classified
as class 7).
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Fig. 5. (a) Dendrogram representing the hierarchical clustering obtained for the Viagras data set, using the Euclidean distance as the similarity measure and centroid

linkage. (b) Colour map representing the similarity matrix. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of

this article).
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4.2.1.2. Cialiss-like samples. For the Cialiss data set also the model
based on three nearest neighbours was selected. The model has a
cross validation error of 0.8108, evaluated using LOOCV and showed a
100% correct classification for the discrimination between counterfeit
and genuine samples. Within the group of the counterfeit samples
7 samples were misclassified. The validation with the external test
set also showed a 100% correct classification for the discrimination
between genuine and counterfeit. Four counterfeit samples were
misclassified (two samples of class 9 classified as class 3, a sample of
class 8 as class 7 and one of class 10 as class 7).



Fig. 6. Dendrogram representing the hierarchical clustering obtained for the Cialiss data set, using the Manhattan distance as the similarity measure and Ward’s method.

The genuine samples are indicated by the ellipses.
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4.2.2. CART

Classification trees were build with the two data sets. In a first
step the maximal tree was build and pruned, followed by the
selection of the optimal tree using a 10-fold cross validation
procedure. For each data set two classification trees were built
using the Gini and the Twoing index. The information index was
not used since it was not considered useful for solving the
considered classification problem.

4.2.2.1. Viagras-like samples. From the graph representing the
cross-validation error in function of the tree complexity of the
trees obtained using the Gini index as split criterion, the tree with
complexity 4 could be selected as optimal tree. The tree (figure
not shown) has a good homogeneity of its leaves with complete
homogeneous leaves for the genuine class (class 0) and the class
of the professional imitations (class 7). The two other leaves
contain the samples of the non-professional imitations (class 8)
with a sample of class 3 and one of class 9 and the samples of
class 2. The cross validation error was 0.32 or 6.8%. During cross
validation all genuine and no counterfeits samples were classified
as genuine. Even if based on the cross validation the tree has good
predictive properties; the external validation showed the opposite.
50% of the samples of the external test set were misclassified
and one genuine sample was classified as counterfeit, which is
unacceptable.

For the trees built with the Twoing index the tree with
complexity 5 was selected as optimal tree (Fig. 7). This tree has a
good homogeneity for its leaves with complete homogeneous
leaves for the genuine class (class 0) and classes 7 and 8 (separated
over two leaves). The fifth class contains the 3 less represented
classes of the data set: classes 2, 3 and 9. The cross validation error
was 0.23% or 4.5%. During external validation all genuine samples
were classified as genuine and all counterfeits as counterfeits.
Within the counterfeits 4 samples were misclassified (two samples
of class 7 classified as class 2, one sample of class 8 as class 2 and
one of class 2 as class 8).

4.2.2.2. Cialiss-like samples. Exactly the same approach was
followed for the Cialiss data set. For both split criteria applied,
trees were obtained with a quite good homogeneity of their
leaves but external validation showed that neither the Gini
neither the Twoing index resulted in a tree that was able to
distinguish between counterfeit and genuine samples. This shows
again that the strategy necessary to discriminate between
genuine and counterfeit medicines will be different depending
on the group of products considered. This can be due to the nature
of the active ingredients and excipients, but also due to the
diversity of producers of a type of counterfeit medicines. It is
clear that Cialiss is less counterfeited than Viagras, due to the
popularity of the brand name of Viagras. Counterfeiting a popular
brand name is just more lucrative.

4.2.3. SIMCA

4.2.3.1. Viagras-like samples. Before applying SIMCA to the data
set it was decided to remove the samples of the poor represented
classes, i.e. the samples of classes 2, 3 and 9. Since SIMCA models
every class separately a minimum number of samples is necessary.
The model is therefore based on only the genuine class and classes
7 and 8. The number of principal components for each class was
selected using leave one out cross validation. For the genuine class



Fig. 7. Classification tree obtained for the Viagras data set with the Twoing index as split criterion. Each split is defined by the selected timepoint and its splitvalue for the

absorbance. Each leaf is defined by the class number of the class most represented in the leaf and the graph gives the distribution (homogeneity) of the different samples in

the leaf.
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five PCs were selected for the model, for class 7 fifteen PCs and for
class 8 six. The cross validation gave a correct classification rate of
97.6% which corresponds to one sample of class 8 misclassified as
class 7. For the discrimination between genuine and counterfeit
samples a 100% correct classification rate is obtained. The external
validation also showed a 100% correct classification for the
discrimination between genuine and counterfeit. Two samples of
the thirteen remaining samples in the test set were misclassified
(one of class 8 classified as class 7 and one of class 7 classified
as class 8).
4.2.3.2. Cialiss-like samples. For the same reasons as for the
previous data set the sample representing class 10 was removed
before applying SIMCA. Based on the leave one cross validation
three principal components were selected for the genuine class
(class 0), class 3 and class 9. For class 7 sixteen PCs were selected
and for class 8 two. For this group of models a correct classification
rate from the cross validation of 97.9% was obtained. This
corresponds to one sample of class 8 misclassified as class 7. For
the discrimination between genuine/counterfeit all samples were
correctly classified. Also the external validation resulted in a 100%
correct classification for the discrimination between counterfeit and
genuine. Three counterfeit samples (one of class 3 and two of class
9 classified as class 7) of the external test set were misclassified.
4.2.4. SVM

Two types of SVM models were build for both data sets. A least
square SVM algorithm [43,44] was applied two times. Once using
a radial basis function Kernel function (RBF-Kernel) and once
using a Kernel function based on the standard inner product
(lin-Kernel). Both functions are adapted for implicit higher
dimension mapping. The selection of the models was based on a
10-fold cross validation procedure.

4.2.4.1. Viagras-like samples. The best model was obtained by
using the RBF-Kernel function for mapping the data. For the
external test set a 100% correct classification rate was obtained for
the discrimination between genuine and counterfeit samples, while
the counterfeit sample of class 2 was misclassified as class 7. Also
the model using the lin-Kernel function gave satisfying results with
a 100% correct classification rate for the discrimination between
genuine and counterfeit samples and only the sample of class 2 was
misclassified. In comparison with the first model 2 counterfeit
samples, one of class 7 and one of class 8, were unclassified.

4.2.4.2. Cialiss-like samples. For the Cialiss data set the SVM model
using the RBF Kernel function gave unsatisfying results. The genuine
samples of the external test set were considered as unclassified,
while five counterfeit samples of the test set were misclassified.



Table 3
Overview of the performance of the different models for the external test sets expressed as correct classification rates (CCR).

Technique Viagra data set Cialis data set

CCR genuine/counterfeit (%) CCR overall CCR genuine/counterfeit (%) CCR overall

Misclassified Unclassified Misclassified Unclassified

kNN 100 1/14 3/14 100 4/12 0/12

CART 100 4/14 0/14 0 8/12 0/12

SIMCA 100 2/13 0/13 100 3/12 0/12

LS-SVM 100 1/14 0/14 100 3/12 0/12
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The model obtained with the lin-Kernel function performed
better and gave a 100% correct classification rate for the discrimi-
nation between genuine and counterfeit samples. Only 3 counterfeit
samples (samples of classes 8, 9 and 10) were misclassified.
5. Discussion and conclusions

The analysis of the two considered data sets was started with
exploratory chemometric tools in order to reveal the structure in
the data sets and differences between the different samples. For
the differences between the samples, the analysis was focussed
on differences between genuine and counterfeit samples and on
differences between the different groups of counterfeit samples.

For the Viagras data set, a clear differentiation between
genuine and counterfeit samples could be observed with all
chemometric techniques applied (PCA, D-PLS, PP and hierarchical
clustering). Despite this, only PP with the Yenyukov index and
hierarchical clustering using centroid linkage with the Euclidean
distance are able to reveal differences among the different
counterfeit samples. Where PP indicates only a tendency to
cluster between groups 7 and 8, next to the clear differentiation
between genuines and counterfeits, hierarchical clustering clearly
clusters the samples in genuines, the three smaller groups, class
7 and class 8. This indicated that there are clear differences
among the samples and that it should be possible to model these
differences. When investigating the loadings in the projection
techniques, it was observed that no specific regions could be
indicated as responsible for the differentiations between genuine
and counterfeit samples and among counterfeit samples. This
could mean that it is the complete profile that enables the
differentiations.

For the Cialiss data set it was more tedious to find a structure
within the data. Only D-PLS, which is a supervised technique, and
hierarchical clustering using Ward’s method with the Manhattan
distance were able to show a differentiation between genuine and
counterfeit samples. The reason for a more difficult clustering in
this data set is probably due to the nature of the different
samples. The counterfeit samples of Cialiss are less diverse than
the ones of Viagras. They have practically all the same colour and
size, where for the Viagras data set there is a wide range of
shapes, sizes and colours. Though based on the results of the
exploratory analysis, it should be possible to at least model the
differences between genuines and counterfeits. Investigation of
the loadings of the PLS analysis lead to the same conclusion as for
the Viagras data set. The complete chromatographic profile
seems responsible for the differentiation between genuine and
counterfeit samples.

Based on the results of the exploratory analysis four different
modelling techniques were applied and compared for their pre-
dictive performance for the discrimination between genuine and
counterfeit samples and for the classification in the different
groups defined by RIVM.
Table 3 summarises the results, obtained for the external test
set, for the selected models of the techniques applied.

For the Viagras data set all models selected are able to
differentiate between genuine and counterfeit medicines and
have a 100% correct classification rate for this distinction in cross
validation as well as for external validation. For the classification
of the samples in the different groups of counterfeit, the LS-SVM
model performs the best with only one sample misclassified in
the external test set. Here it should also be mentioned that SIMCA
gave also good classification results with only two misclassified
samples for the external test set. The disadvantage here is that it
is not possible to have a correct modelling of very small classes,
since each class is modelled separately. Though it could be
expected, that when the data set would be bigger, with higher
representation of the smaller classes, SIMCA would perform as
good as LS-SVM.

For the Cialiss data set kNN, SIMCA and LS-SVM gave very
comparable results, while CART failed completely in modelling
the differences among the samples. kNN, SIMCA and LS-SVM all
had 100% correct classification rates for the classification in
genuine and counterfeit and SIMCA and LS-SVM had both 3 coun-
terfeit samples misclassified.

To conclude it can be said that impurity profiles or chromato-
graphic fingerprints could be a valuable approach in the detection
of counterfeit medicines, as well as in the classification of these
counterfeit samples in different categories linked to their risk for
public health. The possibility to differentiate genuine and coun-
terfeit samples as well as the different groups of counterfeit
samples was demonstrated with different exploratory chemo-
metric techniques.

To build predictive models based on chromatographic finger-
prints LS-SVM was performed best considering the results for
both the Viagras and the Cialiss data set. Though, based on the
results for SIMCA it should be mentioned that SIMCA can be a
good compromise, since despite the slightly worse predictive
properties, SIMCA is easier to calculate, understand and interpret.

Of course it should be mentioned that the approach proposed
here is only valid for the group of Viagras and Cialiss samples.
The applicability of the approach to other groups of medicines
like counterfeit antibiotics or slimming products can be different
both in analytical and in chemometric techniques. Each group of
counterfeit medicines should be considered as a separate problem
and the best approach should therefore be selected/investigated
for each group of medicines.
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[26] J.K. Maurin, F. Pluciński, A.P. Mazurek, Z. Fija"ek, J. Pharm. Biomed. Anal. 43
(2007) 1514–1518.
[27] A.S. Amin, M.E. Moustafa, R. El-Dosoky, J. AOAC Int. 92 (2009) 125–130.
[28] A.L. Rodomonte, M.C. Gaudiano, E. Antoniella, D. Lucente, V. Crusco,

M. Bartolomei, P. Bertocchi, L. Manna, L. Valvo, N. Muleri, J. Pharm. Biomed.

Anal. 53 (2010) 215–220.
[29] I. Wawer, M. Pisklak, Z. Chilmonczyk, J. Pharm. Biomed. Anal. 38 (2005)

865–870.
[30] C.-J. Xu, Y.-Z. Liang, F.-T. Chau, Y. Vander Heyden, J. Chromatogr. A 1134

(2006) 253–259.
[31] S.-K. Yan, W.-F. Xin, G.-A. Luo, Y.-M. Wang, Y.-Y Cheng, J. Chromatogr. A 1090

(2005) 90–97.
[32] C. Han, Y. Shen, J. Chen, F.S. Lee, X. Wang, J. Chromatogr. B 862 (2008)

125–131.
[33] P. Hu, Q.-L. Liang, G.-A. Luo, Z.-Z. Zhao, Z.-H. Jiang, Chem. Pharm. Bull. 53

(2005) 677–683.
[34] Y. Ni, Y. Lai, S. Brandes, S. Kokot, Anal. Chim. Acta 647 (2009) 149–158.
[35] F. Xiaohui, W. Yi, C. Yiyu, J. Pharm. Biomed. Anal. 40 (2006) 591–597.
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